Point-Mass Dynamics and
Aerodynamic Forces
Robert Stengel, Aircraft Flight Dynamics,
MAE 331, 2008
? Frames of reference
? Velocity and momentum
? Newton!s laws
? Introduction to Lift, Drag, and Thrust
? Simpli?ed longitudinal equations of
motion
Copyright 2008 by Robert Stengel. All rights reserved. For educational use only.
http://www.princeton.edu/~stengel/MAE331.html
http://www.princeton.edu/~stengel/FlightDynamics.html
Newtonian Frame of Reference
? Newtonian (Inertial) Frame of
Reference
?C Unaccelerated Cartesian frame
whose origin is referenced to an
inertial (non-moving) frame
?C Right-hand rule
?C Origin can translate at constant
linear velocity
?C Frame cannot be rotating with
respect to inertial origin
? Translation = Linear motion
!
r =
x
y
z
"
#
$
$
$
%
&
'
'
'
? Position: 3 dimensions
? What is a non-moving frame?
Approximations to Inertial Frame of
Reference Depend Upon the Application Velocity and Momentum
? Velocity of a particle
!
v =
dx
dt
= ?Bx =
?Bx
?By
?Bz
"
#
$
$
$
%
&
'
'
'
=
vx
vy
vz
"
#
$
$
$
%
&
'
'
'
? Linear momentum of a particle
!
p = mv = m
vx
vy
vz
"
#
$
$
$
%
&
'
'
'
where m = mass of particle
Newton’s Laws of Motion:
Dynamics of a Particle
? First Law
?C If no force acts on a particle, it remains at
rest or continues to move in a straight line
at constant velocity, as observed in an
inertial reference frame -- Momentum is
conserved
!
d
dt
mv( ) = 0 ; mv t1
= mv t2
!
d
dt
mv( ) = m
dv
dt
= F ; F =
fx
fy
fz
"
#
$
$
$
%
&
'
'
'
(
dv
dt
=
1
m
F =
1
m
I3F =
1/m 0 0
0 1/m 0
0 0 1/m
"
#
$
$
$
%
&
'
'
'
fx
fy
fz
"
#
$
$
$
%
&
'
'
'
? Second Law
?C A particle of ?xed mass acted upon by
a force changes velocity with an
acceleration proportional to and in the
direction of the force, as observed in an
inertial reference frame;
?C The ratio of force to acceleration is the
mass of the particle: F = m a
? Third Law
?C For every action, there is an equal
and opposite reaction
Equations of Motion for a Point Mass:
Position and Velocity
!
dv
dt
= ?Bv =
?Bvx
?Bvy
?Bvz
"
#
$
$
$
%
&
'
'
'
=
1
m
F =
1/m 0 0
0 1/m 0
0 0 1/m
"
#
$
$
$
%
&
'
'
'
fx
fy
fz
"
#
$
$
$
%
&
'
'
'
!
dr
dt
= ?Br =
?Bx
?By
?Bz
"
#
$
$
$
%
&
'
'
'
= v =
vx
vy
vz
"
#
$
$
$
%
&
'
'
'
Equations of Motion for a
Point Mass
!
?Bx(t) =
dx(t)
dt
= f[x(t),F]
? Written as a single equation
x "
r
v
#
$
%
&
'
( =
x
y
z
vx
vy
vz
#
$
%
%
%
%
%
%
%
&
'
(
(
(
(
(
(
(
? With
Combined Equations for a
Point Mass
!
?Bx
?By
?Bz
?Bvx
?Bvy
?Bvz
"
#
$
$
$
$
$
$
$
%
&
'
'
'
'
'
'
'
=
vx
vy
vz
fx /m
fy /m
fz /m
"
#
$
$
$
$
$
$
$
%
&
'
'
'
'
'
'
'
=
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
"
#
$
$
$
$
$
$
$
%
&
'
'
'
'
'
'
'
x
y
z
vx
vy
vz
"
#
$
$
$
$
$
$
$
%
&
'
'
'
'
'
'
'
+
0 0 0
0 0 0
0 0 0
1/m 0 0
0 1/m 0
0 0 1/m
"
#
$
$
$
$
$
$
$
%
&
'
'
'
'
'
'
'
fx
fy
fz
"
#
$
$
$
%
&
'
'
'
!
FI =
fx
fy
fz
"
#
$
$
$
%
&
'
'
'
I
= Fgravity + Faerodynamics + Fthrust[ ]I
Gravitational Force:
Flat-Earth Approximation
? g is gravitational acceleration
? mg is gravitational force
? Independent of position
? z measured down
!
u = mgf = m
0
0
go
"
#
$
$
$
%
&
'
'
'
; go = 9.807 m /s2
Aerodynamic
Force
!
FI =
X
Y
Z
"
#
$
$
$
%
&
'
'
'I
=
CX
CY
CZ
"
#
$
$
$
%
&
'
'
'I
1
2
(V 2
S
=
CX
CY
CZ
"
#
$
$
$
%
&
'
'
'I
q S
? Referenced to the
Earth not the
aircraft
Inertial Frame Body-Axis Frame Velocity-Axis Frame
!
FB =
CX
CY
CZ
"
#
$
$
$
%
&
'
'
'B
q S
!
FV =
CD
CY
CL
"
#
$
$
$
%
&
'
'
'
q S
? Aligned with the
aircraft axes
? Aligned with and
perpendicular to
the direction of
motion
Angles Between
Reference Frames
Velocity
Orientation in
Inertial Frame
Body Orientation
in Inertial Frame
Velocity
Orientation in
Body Frame
Angles Projected on the
Unit Sphere
!
" : angle of attack
# : sideslip angle
$ :vertical flight path angle
% : horizontal flight path angle
& : yaw angle
' : pitch angle
( : roll angle (about body x ) axis)
μ :bank angle (about velocity vector)
? Origin is airplane!s
center of mass
Angles Related to an Aircraft
V, !, "
V, #, $
Lift and Drag are Oriented to
the Velocity Vector
? Drag components sum to produce total drag
?C Skin friction
?C Base pressure differential
?C Shock-induced pressure differential (M > 1)
? Lift components sum to produce total lift
?C Pressure differential between upper and lower surfaces
?C Wing
?C Fuselage
?C Horizontal tail
!
Lift = CL
1
2
"V 2
S # CL0
+
$CL
$%
%
&
'(
)
*+
1
2
"V 2
S
!
Drag = CD
1
2
"V 2
S # CD0
+ $CL
2
[ ]1
2
"V 2
S
Aerodynamic Lift
? Fast ?ow over top + slow ?ow over bottom =
Mean ?ow + Circulation
? Speed difference proportional to angle of attack
? Kutta condition (stagnation points at leading and
trailing edges)
Chord Section
Streamlines
!
Lift = CL
1
2
"V 2
S # CLw
+ CL f
+ CLht( )1
2
"V 2
S # CL0
+
$CL
$%
%
&
'(
)
*+
1
2
"V 2
S
2D vs. 3D Lift
? Inward ?ow over upper surface
? Outward ?ow over lower surface
? Bound vorticity of wing produces tip
vortices
Inward-Outward Flow
Tip Vortices
Identical Chord Sections
In?nite vs. Finite Span
飞行翻译公司 www.aviation.cn
本文链接地址:Aircraft Flight Dynamics MAE331Lecture2.pdf